

EAMCET CODE: INDI

Sri Indu Institute of Engineering and Technology (Autonomous)

(Formerly RVR Institute of Engineering & Technology)

An Autonomous Institution Under UGC

NAAC Accredited. Recognized Under 2(f) of UGC Act 1956 Approved by AICTE, New Delhi, & Affiliated to JNTUH, Hyderabad.

JNTUH CODE: X3

COURSE FILE

ON

MATRICES & CALCULUS

Course Code - MA101BS

I-B.Tech Semester-I

A.Y. 2022-2023

Prepared by

CH.SARITHA

Asst. Professor

Head of the Department
Department of H&S

SRI INDU INSTITUTE OF ENGG & TECH rerigioida(M) Ibrahimoatnam (M) R.R. Dist-501 510 Sri Indu Institute of Engineering & Tech Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510, Telangana. Campus Ph: 9640590999, 9347187999.

https://siiet.ac.in

EAMCET CODE: INDI

Sri Indu Institute of Engineering and Technology (Autonomous)

(Formerly RVR Institute of Engineering & Technology)

An Autonomous Institution Under UGC

NAAC Accredited. Recognized Under 2(f) of UGC Act 1956

Approved by AICTE, New Delhi, & Affiliated to JNTUH, Hyderabad.

JNTUH CODE: X3

Index of Course File

	COURSE FILE INDEX					
S.No	Course/Subject Name					
1	Institute Vision & Mission					
2	POs /PSOs					
3	Course Structure					
4	Course syllabus					
5	Course Outcomes (CO)					
6	Mapping CO with PO/PSO; course with PO/PSO					
7	Academic Calendar					
8	Time table - highlighting your course periods including tutorial					
9	Lesson plan with number of hours/periods, TA/TM, Text/Reference book					
10	Gap within the syllabus - mapping to CO, PO/PSO					
11	Gaps beyond the syllabus - Mapping to PO/PSO					
12	Web references					
13	Lecture notes					
14	List of Power point presentations / Videos					
15	University Question papers					
16	Internal Question papers, Key with CO and BTL					
17	Assignment Question papers mapped with CO and BTL					
18	Scheme of evaluation with CO and BTL mapping					
19	Tutorial topics with evidence					
20	Result Analysis to identify weak and advanced learners					
21	Result Analysis at the end of the course					
22	Remidial class schedule and evidences					
23	CO, PO/PSO attainment					
24	Attendance register					
25	Course file (Digital form)					

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510, Telangana. Campus Ph: 9640590999, 9347187999.

https://siiet.ac.in

(Formerly RVR Institute of Engineering & Technology)

An Autonomous Institution Under UGC

NAAC Accredited. Recognized Under 2(f) of UGC Act 1956

Approved by AICTE, New Delhi, & Affiliated to JNTUH, Hyderabad.

JNTUH CODE: X3

INSTITUTE VISION & MISSION

Vision:

EAMCET CODE: INDI

To become a premier institute of academic excellence by providing the world class education that transforms individuals into high intellectuals, by evolving them as empathetic and responsible citizens through continuous improvement.

Mission:

- > IM1: To offer outcome-based education and enhancement of technical and practical skills.
- > IM2: To Continuous assess of teaching-learning process through instituteindustry collaboration.
- > IM3: To be a centre of excellence for innovative and emerging fields in technology development with state-of-art facilities to faculty and students' fraternity.
- > **IM4:** To Create an enterprising environment to ensure culture, ethics and social responsibility among the stakeholders.

Head of the Department Department of H&S SRI INDU INSTITUTE OF ENGG & TECH

heriouda(M) Ibrahimoatnam (M) R.R. Dist-501 516

RINCIPAL Sri Indu Institute of Engineering & Tecr. Sheriguda(Vill), Ibrahimpatnam R.R. Dist. Telangana-501 510.

Main Road, Sheriguda, Ibrahimpatnam, R.R. Dist. 501 510, Telangana. Campus Ph: 9640590999, 9347187999.

https://siiet.ac.in

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

PROGRAM OUTCOMES

PO1: **ENGINEERING KNOWLEDGE**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: **PROBLEM ANALYSIS**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: **DESIGN/DEVELOPMENT OF SOLUTIONS**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: **CONDUCT INVESTIGATIONS OF COMPLEX PROBLEMS**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: **MODERN TOOL USAGE**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6: **THE ENGINEER AND SOCIETY**: Apply reasoning informed by the contextual knowledge to assesssocietal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: **ENVIRONMENT AND SUSTAINABILITY**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: **ETHICS**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: **INDIVIDUAL AND TEAM WORK**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: **COMMUNICATION**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, give and receive clear instructions.

PO11: **PROJECT MANAGEMENT AND FINANCE**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: **LIFE-LONG LEARNING**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

Head of the Department
Department of H&S
SRI INDU INSTITUTE OF ENGG & TECH
Periouda(M Ibrahimpatnam (M) R.R. Dist-501 516

B.Tech. in COMPUTER SCIENCE AND ENGINEERING (CYBER SECURITY) COURSE STRUCTURE, I YEAR SYLLABUS (BR22 Regulations)

Applicable from Academic Year: 2022-23 Batch

I Year I Semester

S. No.	Course Code	Course Title	L	Т	P	Credits
1.	MA101BS	Matrices and Calculus	3	1	0	4
2.	CH103BS	Engineering Chemistry	3	1	0	4
3.	CS103ES	Programming for Problem Solving	3	0	0	3
4.	EE101ES	Basic Electrical Engineering	2	0	0	2
5.	ME101ES	Computer Aided Engineering Graphics	1	0	4	3
6.	CS106ES	Elements of Computer Science & Engineering	0	0	2	1
7.	CH106BS	Engineering Chemistry Laboratory	0	0	2	1
8.	CS107ES	Programming for Problem Solving Laboratory	0	0	2	1
9.	EE102ES	Basic Electrical Engineering Laboratory	0	0	2	1
		Induction Program				
		Total	12	2	12	20

I Year II Semester

S.	Course	Course	L	Т	P	Credits
No.	Code					
1.	MA201BS	Ordinary Differential Equations and Vector Calculus	3	1	0	4
2.	AP202BS	Applied Physics	3	1	0	4
3.	ME202ES	Engineering Workshop	0	1	3	2.5
4.	EN204HS	English for Skill Enhancement	2	0	0	2
5.	EC201ES	Electronic Devices and Circuits	2	0	0	2
6.	AP205BS	Applied Physics Laboratory	0	0	3	1.5
7.	CS201ES	Python Programming Laboratory		1	2	2
8.	EN207HS	English Language and Communication Skills Laboratory	0	0	2	1
9.	CS203ES	IT Workshop	0	0	2	1
10.	*MC201ES	Environmental Science	3	0	0	0
		Total	13	4	12	20

MATRICES AND CALCULUS

(Course Code: MA101BS)

B.Tech. I Year I Sem.

L T P C 3 1 0 4

Pre-requisites: Mathematical Knowledge at pre-university level

Course Objectives: To learn

• Types of matrices and their properties.

- Concept of a rank of the matrix and applying this concept to know the consistency and solving the system of linear equations.
- Concept of eigenvalues and eigenvectors and to reduce the quadratic form to canonical form
- Geometrical approach to the mean value theorems and their application to the mathematical problems
- Evaluation of surface areas and volumes of revolutions of curves.
- Evaluation of improper integrals using Beta and Gamma functions.
- Partial differentiation, concept of total derivative
- Finding maxima and minima of function of two and three variables.
- Evaluation of multiple integrals and their applications

Course outcomes: After learning the contents of this paper the student must be able to

- Write the matrix representation of a set of linear equations and to analyse the solution of the system of equations
- Find the Eigenvalues and Eigen vectors
- Reduce the quadratic form to canonical form using orthogonal transformations.
- Solve the applications on the mean value theorems.
- Evaluate the improper integrals using Beta and Gamma functions
- Find the extreme values of functions of two variables with/ without constraints.
- Evaluate the multiple integrals and apply the concept to find areas, volumes

UNIT - I: Matrices 10 L

Rank of a matrix by Echelon form and Normal form, Inverse of Non-singular matrices by Gauss-Jordan method, System of linear equations: Solving system of Homogeneous and Non-Homogeneous equations by Gauss elimination method, Gauss Seidel Iteration Method.

UNIT - II: Eigen values and Eigen vectors

10 L

Linear Transformation and Orthogonal Transformation: Eigenvalues, Eigenvectors and their properties, Diagonalization of a matrix, Cayley-Hamilton Theorem (without proof), finding inverse and power of a matrix by Cayley-Hamilton Theorem, Quadratic forms and Nature of the Quadratic Forms, Reduction of Quadratic form to canonical forms by Orthogonal Transformation.

UNIT - III: Calculus 10 L

Mean value theorems: Rolle's theorem, Lagrange's Mean value theorem with their Geometrical Interpretation and applications, Cauchy's Mean value Theorem, Taylor's Series.

Applications of definite integrals to evaluate surface areas and volumes of revolutions of curves (Only in Cartesian coordinates), Definition of Improper Integral: Beta and Gamma functions and their applications.

UNIT - IV: Multivariable Calculus (Partial Differentiation and applications) 10 L

Definitions of Limit and continuity.

Partial Differentiation: Euler's Theorem, Total derivative, Jacobian, Functional dependence & independence. Applications: Maxima and minima of functions of two variables and three variables using method of Lagrange multipliers.

UNIT-V: Multivariable Calculus (Integration)

8 L

Evaluation of Double Integrals (Cartesian and polar coordinates), change of order of integration (only Cartesian form), Evaluation of Triple Integrals: Change of variables (Cartesian to polar) for double and (Cartesian to Spherical and Cylindrical polar coordinates) for triple integrals.

Applications: Areas (by double integrals) and volumes (by double integrals and triple integrals).

TEXT BOOKS:

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.
- 2. R.K. Jain and S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Publications, 5th Editon, 2016.

REFERENCE BOOKS:

- 1. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 2. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002
- 3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.
- 4. H. K. Dass and Er. Rajnish Verma, Higher Engineering Mathematics, S Chand and Company Limited, New Delhi.

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

Course: Matrices and Calculus(C111) Class: I-B.TECH CSE-CS

Course Outcomes

After completing this course the student will be able to:

C111.1 : Analyze the solution of linear system of equations using matrices. (Analyzing)

C111.2 : Convert Quadratic form to Canonical form by orthogonal transformation. (Applying)

C111.3: Solve the applications on the mean value theorems and Taylor's series. (Creating)

C111.4 : Evaluate Improper integrals by using Beta and Gamma functions. (Evaluation)

C111.5: Find Extremum of function of two variables. (Remembering)

C111.6 : Evaluate the Multiple Integrals . (Evaluation)

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

CO's Mapping with PO/PSO

Mapping of course outcomes with program outcomes:

High -3 Medium -2 Low-1

PO/CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C111.1	3	2	-	1	1	-	-	-	-	-	-	1
C111.2	3	2	-	1	1	-	-	-	-	-	-	1
C111.3	2	2	-	1	1	-	-	-	-	-	-	1
C111.4	2	3	-	1	1	-	-	-	-	-	-	2
C111.5	3	2	-	1	1	-	-	-	-	_	-	2
C111.6	3	2	-	1	1	-	-	-	-	_	-	2
C111	2.6	2.17	_	1	1	_	_	-	-	_	_	1.5

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

CO-PO mapping Justification

PO1. ENGINEERING KNOWLEDGE: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. **PO2.PROBLEM ANALYSIS**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO4. CONDUCT INVESTIGATIONS OF COMPLEX PROBLEMS: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. **MODERN TOOL USAGE**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO12. **LIFE-LONG LEARNING**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

C111.1 : Analyze the solution of linear system of equations using matrices. (Analyzing)

	Justification
PO1	Student represent system of equations in matrix form.(level 3)
PO2	Student can analyze rank of matrix by reducing to echelon and normal form.(level 2)
PO4	Student apply knowledge of rank to find solution of system of equations. (level 1)
PO5	Student apply numerical techniques to solve linear system. (level 1)
PO12	Student can recognize importance of linear equations. (level 1)

C111.2 : Convert Quadratic form to Canonical form by orthogonal transformation. (Applying)

	Justification Justification
PO1	Student can find Eigen values of a matrix .(level 3)
PO2	Student identify importance of Eigen values in finding Eigen vectors. (level 2)
PO4	Student use knowledge of Eigen values and Eigen Vectors to diagnolize the matrix.(level 1)
PO5	Student apply techniques of diagonalization to say nature of quadratic form.(level 1)
PO12	Student can recognize step by step procedure in diagonalization (level 1)

C111.3 : Solve the applications on the mean value theorems and Taylor's series. (Creating)

	Justification
PO1	Student know about mean value theorems.(level 2)
PO2	Student apply mean value theorems.(level 2)
PO4	Student get knowledge on Taylor's series.(level 1)
PO5	Student apply Taylor's series to approximate polynomial functions.(level 1)
PO12	Student recognize importance of mean value theorem.(level 1)

C111.4 : Evaluate Improper integrals by using Beta and Gamma functions. (Evaluation)

	Justification
PO1	Student study about beta and gamma functions. (level 2)
PO2	Student evaluate improper integrals by using beta and gamma functions. (level 3)
PO4	Student use knowledge of beta and gamma functions to get approximate value. (level 1)
PO5	Student learn techniques to evaluate surface area and volumes using definite integrals.(level 1)
PO12	Student can recognize importance of beta and gamma functions. (level 2)

C111.5 : Find Extremum of function of two variables. (Remembering)

	Justification
PO1	Student know concepts of jacobian, functional dependence and independence. (level 3)
PO2	Student find maxima and minima for function of two variables with and without constraint. (level 2)
PO4	Student get knowledge on maxima and minima of functions. (level 1)
PO5	Student apply Lagrange multipliers to find maxima and minima of function of two variables. (level 1)
PO12	Student can recognize importance in finding maxima and minima. (level 2)

C111.6 : Evaluate the Multiple Integrals. (Evaluating)

	Justification
PO1	Student get knowledge on double and triple integrals. (level 3)
PO2	Student use multiple integrals in evaluating area and volume. (level 2)
PO4	Student apply knowledge of change of order of integration to evaluate double integrals.(level 1)
PO5	Student use technique of change of variables to convert Cartesian to polar coordinates to evaluate double and triple integrls. (level 1)
PO12	Student can recognize importance of multiple integrals in evaluating area and volume. (level 2)

UGC Autonomous Institution, Accredited by NAAC with A+ Grade Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501 510

https://siiet.ac.in/

Lr. No. SIIET/BR22/Academic Calendar/2022/02

Date: 15.12.2022

REVISED ACADEMIC CALENDAR I B.TECH FOR THE ACADEMIC YEAR 2022-23

(BR22-REGULATIONS)

Dr. I. Satyanarayana, Principal.

X3

To,

All the HOD's

Sir,

Sub: SIIET (Autonomous)—Academic & Evaluation—Revised Academic Calendar for I B.Tech - I & II Semesters for the academic year 2022-2023-Reg.

The approved Academic Calendar for I B.Tech – I & II Semesters for the academic year 2022-23 is given below.

I-SEMESTER

and the second second		Per	Duration			
S. NO	Description	From	To	Duration		
1.	Commencement of I Semester class work (including Induction programme)		03.11.2022			
2.	1st Spell of Instructions	03.11.2022	28.12.2022	8 Weeks		
3.	I Mid Examinations	`29.12.2022	04.01.2023	1 Week		
4.	Submission of First Mid Term Exam Marks to the Autonomous Section on or before	10.01.2023				
5.	2 nd Spell of Instructions	05.01.2023	02.03.2023	8 Weeks		
6.	Second Mid Term Examinations	03.03.2023	09.03.2023	1 Week		
7.	Preparation & Practical Examinations	10.03.2023	16.03.2023	1 Week		
8.	Submission of Second Mid Term Exam Marks to the Autonomous Section on or before	16.03.2023				
9.	I Semester End Examinations	17.03.2023	01.04.2023	2 Weeks		

II-SEMESTER

		Per	D			
S. NO	Description	From	To	Duration		
1.	Commencement of II Semester class work		03.04.2023			
2.	1st Spell of Instructions (including Summer Vacation)	03.04.2023	10.06.2023	10 Weeks		
	Summer Vacation	15.05.2023	27.05.2023	2 Weeks		
3.	I Mid Examinations	`12.06.2023	17.06.2023	1 Week		
4.	Submission of First Mid Term Exam Marks to the Autonomous Section on or before	23.06.2023				
5.	2 nd Spell of Instructions	19.06.2023	12.08.2023	8 Weeks		
6.	II Mid Term Examinations	14.08.2023	19.08.2023	1 Week		
7.	Preparation & Practical Examinations	21.08.2023	26.08.2023	1 Week		
8.	Submission of Second Mid Term Exam Marks to the Autonomous Section on or before	26.08.2023				
9.	II Semester End Examinations	28.08.2023	09.09.2023	2 Weeks		

ndu Institute of Engineering and Technology

(An Autogomous Institution Under Institute Depts. & AO: Sheriguda (VI, Ibrahimpatnam, R.R. Dist-501510.

Sri Indu Institute of Engineering and Technology

(An Autonomous Institution under JNTUH)
Sheriguda (V), Ibrahimpatnam, R.R. Dist-501510.

PRINCIPAL _

Sri Indu Institute of The The Table Technology
(An Autonomous Institution Under JNTUH)
Sheriguda (V), Ibrahimpatnam, R.R. Dist-501510.

Class: CYBER SECURITY

EC

SAT

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

(An Autonomous Institution under UGC)

W.E.F-14-11-2022

EG PRACTICE

LH:-D-207

LIB

Accredited by NAAC with A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501 510

https://siiet.ac.in/

VI VII IV V Ш 11 3.15-4.00 2.25-1.35-12.45-10:30 -11:20-12:10-9:40-3.15 2.25 1.35 12.45 10:30 11:20 12:10 BEE(T)/M&C(T) EC PPS M&C PPS BEE EC MON L EC(T)/PPS(T) PPS BEE ECSE EG PRACTICE TUE U PPS(T)/EC(T) N BEE/EC LAB PPS BEE M&C WED C M&C(T)/BEE(T) H PPS LAB M&C M&C BEE THU EG(T) EC ECSE PPS BEE/EC LAB FRI

Semester: I

Course	Course Name	Name of the Faculty	Course Code	Course Name	Name of the Faculty
MA101BS	Matrices and Calculus	CH.SARITHA	ME101ES	ComputerAided Engineering Graphics	M.V.B.KALYAN
CH103BS	Engineering Chemistry	K.MOUNIKA	CH106BS	Engineering Chemistry Lab	K.MOUNIKA/V.MOUNIKA
CS103ES	Programming for Problem Solving	U.NARESH	CS107ES	Programming for Problem Solving Lab	U.NARESH/G.KALYANI
EE101ES	Basic Electrical Engineering	S.NISCHALA	EE102ES	Basic Electrical Engineering Lab	S.NISCHALA/G.BHARGAV
CS106ES	Elements of Computer Science & Engineering	D.UMA			

K. Nounika Class In-Charge

IN THE PROPERTY OF STREET STREET, STRE

J. Sarika
Time Table Corthantor

BEE

M&C

Dr. R. YADAGIRI RAO

M.Sc., B.Ed., M. Tech (CSE)., Ph.D. Head of the Department Department of H&S

"RI INDU INSTITUTE OF ENGG & TECH "eriguda(V). Ibrahimoatnam (M). R.R. Dist-501 510.

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

Matrices and Calculus: Lesson Plan

L/H	Topic	TA/TM	Reference book
1	Unit wise Introduction of Matrices and	Lecture	R-1
	Calculus syllabus	Method	
2	UNIT –I Matrices	Lecture	R-1
	Types of matrices ,examples	Method	
3	Properties and problems on	Lecture	R-1
	Symmetric, skew symmetric Matrices	Method	
4	Properties and problems on	Lecture	R-1
	Hermitian, skewhermitian Matrices	Method/Black board	
5	Properties and problems on	Lecture	R-1
	Orthogonal, Unitary matrices	Method/Black board	
6	Rank of the matrix by using Echelon	Lecture	R-1,T-1
	form and Normal form and problems.	Method/Black board	
7	Inverse of the matrix by using Gauss	Lecture	R-1
	Jordan method,	Method, Problem	
	problems	solving Method	
8	Concept to know the consistency of	Lecture	R-1,
	Linear system of equations	Method, Video	
9	Homogeneous system of linear	Lecture	R-1,T-1
	equations and problems	Method, Video	
10	Non Homogeneous system of linear	Problem solving	R-1,T-1
	equations and problems	Method, Video	
11	Gauss Elimination method	Lecture	T-1
	and Problems	Method/ Problem	
		solving Method,	
		Video	
12	Gauss seidal Iteration method	Lecture	T-1
	and Problems	Method /Problem	
		solving Method,	
		Video	
13	UNIT – II	Lecture	R-1
	Eigen values and Eigen Vectors	Method, Video	
	Introduction of Linear transformation		
	and Orthogonal transformation		
14	To finding Eigen values and Eigen	Problem solving	T-1
	Vectors of a Matrix	Method, Web	
		Presentation, video	
15	Problems	Problem solving	T-1
		Method, Web, Video	
16	Properties of Eigen values and Eigen	Lecture	R-1
	vectors	Method/Black board	
17	To find Diagonalization of a Matrix	Lecture	T-1
٠		Method/Black board	
18	Problems on Diagonalization	Problem solving	T-1
		Method	
19	Cayley Hamilton theorem -Problems	Problem solving	T-1
		Method, Video	* *

20	Finding Inverse and powers of a Matrix	Lecture	R-1
21	by using Cayley Hamilton theorem	Method, Video	T 1 D 1
21	Quadratic form ,nature,signature of	Lecture	T-1,R-1
22	Quadratic form	Method/Black board	D 1
22	Reduction of Quadratic form to	Lecture	R-1
	Canonical form by using Orthogonal	Method/Black board	
	transformation	_	
23	UNIT - III Calculus	Lecture	R-1
	Introduction of Mean value theorems	Method	
24	Rolle's Mean value theorem - Problems	Problem solving	R-1
		Method, web	
		presentation	
25	Lagrange's Mean value theorem-	Problem solving	R-1
	Problems	Method ,web	
		presentation	
26	Applications	Lecture	R-1
<u> </u>		Method/Black board	
27	Cauchy's mean value theorem –	Problem solving	R-1,T-1
	Problems	Method, web	
•		presentation	2 (7 (
28	Taylor's Series - Problems	Problem solving	R-1,T-1
•		Method	
29	Applications of definite integrals to	Lecture	R-1
	evaluate surface areas and volumes of	Method	
	revolutions of curves		
30	Introduction of Improper Integrals	Lecture	R-1
	Applications of definite integrals to	Method	
	evaluate surface areas and volumes of		
	revolutions of curves		
31	Introduction of Improper Integrals	Lecture	R-1
		Method	2.5
32	Beta and Gamma functions and their		R-1,T-1
	properties -problems	_	7.1
33	UNIT - IV	Lecture	R-1
	Multi variable Calculus (Partial	Method/Black board	
	differentiation and applications)		
24	Introduction of Limit and Continuity	Duchlam calvina	D 1 T 1
34	Euler's theorem, Total derivative - Problems	Problem solving Method	R-1,T-1
25		Method	
35	Jacobian, functional dependence and independence - Problems Problem		
36	Maxima and Minima of functions of		T-1
30	two variables - Problems	Problem solving Method, Video	1-1
37	Maxima and Minima of functions of	,	T-1
31		Problem solving Method, Video	1-1
38	two variables - Problems Maxima and Minima of functions of	,	T-1
30	three variables - Problems-lagrangian	Problem solving Method, Video	1-1
	method of multipliers	ivieniou, v luco	
39	Maxima and Minima of functions of	Problem solving	T-1
37	three variables - Problems-lagrangian	Method, Video	1-1
	method of multipliers	iviculou, v luco	
40	UNIT –V	Lecture	R-1
40	Multivariable Calculus	Method	K-1
		Meniou	
11	(Integration) Evaluation of Double integrals	Lacture	R-1
41	Evaluation of Double integrals-	Lecture Mothod/Plack board	K-1
42	Cartesian coordinates	Method/Black board	D 1
	HAVELLISTION OF LIQUIDIA INTAGRALS POLOR	Lecture Method	R-1
42	Evaluation of Double integrals-Polar coordinates	2000010111001100	

43	Change of order of integration(Cartesian	Problem solving	T-1
	form)	Method	
44	Evaluation of triple integrals -	Lecture Method	T-1
	Introduction		
45	Change of variables(Cartesian to polar)	Problem solving	T-3
	for double integrals -problems	Method	
46	Cartesian to Spherical and Cylindrical	Lecture Method	T-1
	polar coordinates for triple integrals -	Problem solving	
	problems	Method	
47	Applications : Areas by double integrals	Lecture Method	T-3
	-problems	Problem solving	
		Method	
48	Volumes by double and triple integrals	Lecture Method	T-3
	-problems	Problem solving	
		Method	

REFERENCES:

- R-1 .Ramana B.V., Higher Engineering Mathematics, Tata Mc GRAW Hill ,New Delhi
- R-2 .N.P. Bali and Manish Goyal, A text book of Engineering Mathematics

TEXTBOOKS:

- T-1 B.S.Grewal, Higher Engineering Mathematics, Khanna Publishers
- T-2 Erwin Kreyszig, Advanced Engineering Mathematics

.

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

GAP WITHIN THE SYLLABUS - MAPPING TO CO, PO

Cramer's rule, Matrix inversion method, Continuity and differentiability of a function with examples, Integration and differentiation methods.

Course Outcomes

After completing this topic, the student will be able to:

- 1.Student can compare methods in solving linear system of equations. (Analysis)
- 2.After knowing calculus concepts student can easily solve partial differential equations methods and problems(Application)
- 3. After knowing calculus methods student can easily define beta gamma derivations (Knowledge)

Mapping of course outcomes with program outcomes:

High -3 Medium -2 Low-1

PO/CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	2	3	-	-	-	-	-	-	-	-	-	-
2	3	2	-	-	-	-	-	-	-	-	-	-
3	2	2	-	-	-	-	-	-	-	-	-	-

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

GAP BEYOND THE SYLLABUS-MAPPING TO PO/PSO

- 1. Regular industrial visits help students to know the information useful for knowledge upgradation.
- 2. Students are encouraged to take part in Technical Quizzes and various co-curricular activities to ensure their overall development
- 3. Teaching at least a few portions giving practical demonstration to create interest among the students
- 4. Introducing current Scientific and Technological innovations and development
- 5. Computer aided learning tools are also used for better visual display for the Mathematics

Mapping to PO/PSO:

High -3 Medium -2 Low-1

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	-	-	-	2		-	-	-	-	-	-	2
2	_	-	-	-	-	-	-	-	-	2	-	-
3	_	-	-	-	-	-	-	-	-	-	3	-
4	-	-	-	-	-	-	-	-	1	-	-	-
5	_	-	-	-	2	-	-	-	-	-	-	-

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana

WEB REFERENCES:

- W-1 http://cs229.stanford.edu/section/cs229-linalg.pdf (For UNIT-I,UNIT-II)
- W-2 https://see.stanford.edu/materials/Isoeldsee263/15-symm.pdf (For UNIT-I,UNIT-II)
- W-3 http://tutorial.math.lamar.edu/Classes/Calcll/SeriesIntro.aspx (For UNIT-III)
- $W-4 \quad \underline{\text{http://tutorial.math.lamar.edu/Classes/Calcl/MeanValueTheorem.aspx}} \text{ (For UNIT-IV)}$
- W-5 http://tutorial.math.lamar.edu/Classes/CalcI/MeanValueTheorem.aspx (For mean value theorems)

VIDEO REFERENCES:

- V-1 https://nptel.ac.in/courses/111105035/5 (Video for eigen values and eigen vectors)
- V-2 https://nptel.ac.in/courses/111105035/7 (Video for Cayley Hamilton theorem)
- V-3 https://nptel.ac.in/courses/111105035/4 (Video for Linear Transformation)
- V-4 https://www.youtube.com/watch?v=ajJD0Df5Csy (For Gauss seidal iteration method)
- V-5 https://www.youtube.com/watch?v=2j5Ic2V7wq4 (For Gauss Elimination method)
 - V-6 https://www.youtube.com/watch?v=73DSHyBQ8i0 (For Sequences and series convergence and Divergent)
 - V-7 https://www.youtube.com/watch?v=7uWXuZSxmVc (different types of tests for convergence)
 - V-8 https://www.youtube.com/watch?v=gLWUrF_cOwQ (For Maxima and Minima)
 - V-9 https://www.youtube.com/watch?v=ry9cgNx1QV8 (For Maxima and Minima)

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana

M&C LECTURE NOTES

https://drive.google.com/file/d/1WrF9IP2IE-Kjkb- DNzuuzW3P1Tn69Z2/view?usp=sharing

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

POWERPOINT PRESENTATION

Mean Value Theorem

CH.SARITHA
Assistant Professor
Department of Mathematics
SRI INDU INSTITUTE OF ENGINEERING AND
TECHNOLOGY

 $\frac{https://docs.google.com/presentation/d/1YR6x-}{kR2BH9QiGbWCgtOytesFlTERZYf/edit?usp=sharing\&ouid=110163643122273780191\&rtpof=true\&sd=true$

 $\underline{https://docs.google.com/presentation/d/1v1sktn8Lu5w77VdFT2HJYCr6fnV1hJOn/edit?usp=sharing\&ouid=110163643122273780191\&rtpof=true\&sd=truelines.$

e

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

PREVIOUS QUESTION PAPERS

https://drive.google.com/file/d/1dIABobEjhLeObpp0c--M1mkvHlpwhzzr/view?usp=sharing

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

Set-I

I B.TECH SEM-I MID-I EXAMINATION Dec-2022/Jan-2023

Year & Branch: Common to All
Subject: MATRICES & CALCULUS
Marks: 20
Date & Session: 29-12-2022 &FN
Time: 2 Hours

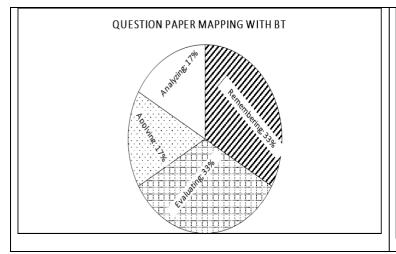
Answer any FOUR Questions. All Question Carry Equal Marks.

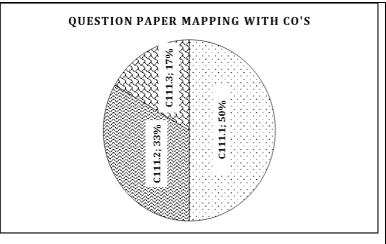
1. Define the Rank of the Matrix and find the rank of the following matrix using Echelon form

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ -2 & -3 & 1 & 2 \\ -3 & -4 & 5 & 8 \\ 1 & 3 & 10 & 14 \end{bmatrix}$$
 (Remembering(L1))

2. Show that the equations x - 4y + 7z = 14,3x + 8y - 2z = 13,7x - 8y + 26z = 5 are inconsistent

(Evaluating(L5))


- 3. . Solve the system of equations 10x + y + z = 12, 2x + 10y + z = 13, 2x + 2y + 10z = 14 by using Gauss seidel iteration method (**Applying(L3)**)
- 4. If $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ find the value of the matrix $A^8 5A^7 + 7A^6 3A^5 + A^4 5A^3 + 8A^2 2A + I$


using Cayley Hamilton theorem (**Remembering(L1)**)

5 .Reduce the given Quadratic form to canonical form 2xy+2yz+2zx by orthogonal reduction and find the

Nature, Index and Signature of Quadratic form. (Analyzing(L4))

6. Verify Rolle's theorem for $f(x) = e^x(\sin x - \cos x)$ in $\left[\frac{\pi}{4}, \frac{5\pi}{4}\right]$ (Evaluating(L5))

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

Set-II

I B.TECH SEM-I MID-II EXAMINATION March-2023

Year & Branch: Common to All
Subject: MATRICES & CALCULUS
Marks: 20
Date & Session: 03-03-2023 &FN
Time: 2 Hours

Answer any FOUR Questions. All Question Carry Equal Marks.

1. a) Express $f(x) = \log \cos x$ as Taylor's series about $x = \pi/3$

Understanding(L2)

b) Obtain the Maclaurin's series expansion of f(x) = cosx

Understanding(L2)

2. If x+y+z=u, y+z=uv, z=uvw then evaluate i) $\frac{\partial(x,y,z)}{\partial(u,v,w)}$ ii) $\frac{\partial(u,v,w)}{\partial(x,y,z)}$

Evaluating(L5)

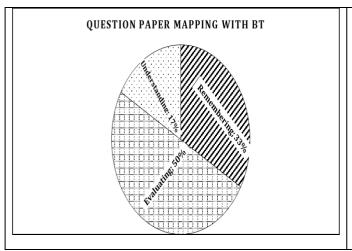
3. Find the maximum and minimum distances of the point of $u = x^2y^3z^4$ if

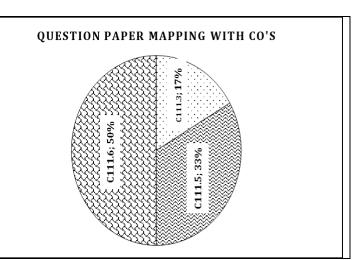
2x+3y+4z = a Remembering(L1)

4. Evaluate i) $\int_0^5 \int_0^{x^2} x(x^2 + y^2) dxdy$

Evaluating(L5)

ii) $\int_0^4 \int_0^{x^2} e^{\frac{y}{x}} dxdy$


Evaluating(L5)


5. Evaluate $\int_0^{\pi} \int_0^{a(1+\cos\theta)} r^2 \cos\theta dr d\theta$

Evaluating(L5)

6. Find the area of the region bounded by the parabolas $y^2=4ax$ and $x^2=4ay$

Remembering(L1)

MID I & MID-II KEY link

https://drive.google.com/file/d/1pPgcpOemx_mu7vWduESLBeYINF64r893/view?usp=sharing

MID-I & MID-II SAMPLE STUDENT SCRIPTS Link

https://drive.google.com/file/d/1sc5Mlf9lvVCh5jVDks5ua_BgYG-em3Ka/view?usp=sharing https://drive.google.com/file/d/1xnvu2xUeY4siG2llKAEgfKdegP5efSxm/view?usp=sharing

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

I-MID M&C ASSIGNMENT

1. Define the Rank of the Matrix and find the rank of the following matrix using Echelon form

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ -2 & -3 & 1 & 2 \\ -3 & -4 & 5 & 8 \\ 1 & 3 & 10 & 14 \end{bmatrix}$$

2. Define the Rank of the Matrix and find the rank of the following matrix using Normal form

- 3. Find the value of k if the rank of the matrix A is 2 where $A = \begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & k & 0 \end{bmatrix}$ (Remembering(L1))
- 4. Find the inverse of the matrix A using Gauss Jordan Method(Elementary row operations)

$$\begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$$
 (Remembering(L1))

- 5. Discuss for what values of a, b the simultaneous equations x+y+z=6, x+2y+3z=10, x+2y+az=bhave i) no solution ii) a unique solution iii) an infinite number of solutions (Creating(L6))
- 6. Show that the system of equations x+2y+z = 3, 2x + 3y + 2z = 5, 3x-5y+5z = 2, 3x+9y-z = 4 are Consistent and solve them. (Evaluating(L5))
- 7. Solve the system of equations 10x + y + z = 12, 2x + 10y + z = 13, 2x + 2y + 10z = 14 by using Gauss seidel iteration method (Applying(L3))
- 8. Verify Cayley Hamilton theorem and find A^{-1} and A^{4} for the matrix $A = \begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$

(Evaluating(L5))

9. If
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$$
 find the value of the matrix $A^8 - 5A^7 + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + I$

using Cayley Hamilton theorem (Remembering(L1))

- 10. Prove that the sum of eigen values of the matrix A is equal to its trace of A and product of eigen values to its determinant. (Evaluating(L5))
- 11. Diagonalize the matrix $A = \begin{bmatrix} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$ (Analyzing(L4))
- 12. Reduce the Quadratic form $3x^2 + 5y^2 + 3z^2 2yz + 2zx 2xy$ to the canonical form by orthogonal Reduction and find the Nature, rank, index and signature of the Quadratic form (Analyzing(L4))
- 13. Reduce the given Quadratic form to canonical form 2xy+2yz+2xx by orthogonal reduction and find the Nature, Index and Signature of Quadratic form. (Analyzing(L4))
- 14. Verify Rolle's theorem for $f(x) = e^x(\sin x \cos x)$ in $\left[\frac{\pi}{4}, \frac{5\pi}{4}\right]$ (Evaluating(L5))
- 15. State Rolle's theorem and verify for $f(x) = x^3 6x^2 + 11x 6$ in [1,3] (Understanding(L2))

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

II-MID M&C ASSIGNMENT

- 1. a) Express $f(x) = \log \cos x$ as Taylor's series about $x = \pi/3$ Understanding(L2)
 - b) Obtain the Maclaurin's series expansion of f(x) = cosx Understanding(L2)
- 2. Find the volume of the solid generated by revolving the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (o<b<a) rotates about major axis **Remembering(L1)**
- 3. Show that the area of the surface generated by the revolution about the x-axis of the loop of the curve $3ay^2 = x(x-a)^2$ is $\frac{\pi a^2}{3}$ **Evaluating(L5)**
- 4. If $z = log(e^x + e^y)$ show that $rt-s^2 = 0$ **Evaluating(L5)**
- 5. Using Euler's theorem, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$ if $u = \tan^{-1}(\frac{x^3 + y^3}{x + y})$ Applying(L3)
- 6. If u = f(r) and $x = r\cos\theta$, $y = r\sin\theta$ then prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = f^{II}(r) + \frac{1}{r}f^I(r)$

Evaluating(L5)

- 7. Find $\frac{du}{dx}$ if $u = \sin(x^2 + y^2)$ where $a^2x^2 + b^2y^2 = c^2$ Remembering(L1)
- 8. If x+y+z = u , y+z = uv, z = uvw then evaluate i) $\frac{\partial(x,y,z)}{\partial(u,v,w)}$ ii) $\frac{\partial(u,v,w)}{\partial(x,y,z)}$ **Evaluating(L5)**
- 9. Showthat the functions u=x+y+z, v=xy+yz+zx and $w=x^2+y^2+z^2$ are functionally dependent and find the relation between them **Evaluating(L5)**
- 10. Find the maximum and minimum distances of the point of $u=x^2y^3z^4$ if 2x+3y+4z=a

Remembering(L1)

11. Find the maxima and minima of the function $f(x,y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$

Remembering(L1)

- 12. Evaluate i) $\int_0^5 \int_0^{x^2} x(x^2 + y^2) dxdy$ Evaluating(L5) ii) $\int_0^4 \int_0^{x^2} e^{\frac{y}{x}} dxdy$ Evaluating(L5)
- 13. Solve $\int_0^{\log 2} \int_0^x \int_0^{x+\log y} e^{x+y+z} dx dy dz$ Evaluating(L5)
- 14. Find the area of the region bounded by the parabolas $y^2=4ax$ and $x^2=4ay$ **Remembering(L1)**
- 15. Evaluate the double integral $\int_0^{4a} \int_{\frac{y^2}{4a}}^{y} \left(\frac{x^2-y^2}{x^2+y^2}\right) dxdy$ by changing into polar coordinates **Evaluating(L5)**
- 16. Change the order of integration in $\int_0^1 \int_{x^2}^{2-x} xy dx dy$ and hence evaluate the double integral Creating(L6)

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.
(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)
Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

I-MID & II-MID M&C ASSIGNMENT PROOFS

MID-I & MID-II link

https://drive.google.com/file/d/1XeXt9UsXjHNZgVdrMBdjFk-j-A2gsuD2/view?usp=sharing

TO ENGINEE IN THE PROPERTY OF THE PROPERTY OF

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

SCHEME OF EVALUATION WITH CO and BTL MAPPING

SCHEME OF EVALUATION-MATRICES & CALCULUS(MID-I)(Set-I)

Instructions:

- a) Any answer by alternate method should be valued and suitably awarded.
- b) All answers (including extra, stuck off and repeated) should be valued. Answers with maximum marks must be considered.

Qn No	Description of Answer	Marks			
1.	Using row1 and column1 operations (C111.1) (Analyzing)	1			
	Using row2 and column2 operations (C111.1) (Analyzing)	1			
	Using row3 and column3 operations & get rank (C111.1) (Analyzing)	3			
2.	To write matrix form (C111.1) (Analyzing)	1			
	To write augmented form and getting rank using echelon form and rank of A not equal to rank of [A;B](C111.1) (Analyzing)	2			
	To compare consistency and to get solution(C111.1) (Analyzing)	2			
3.	To check diagonal dominant (C111.1) (Analyzing)	1			
	To find iterations until get solution (C111.1) (Analyzing)	4			
4.	To find characteristic equation of A (C111.2) (Applying)				
	Using Cayley Hamilton theorem and Calculations(C111.2) (Applying)	3			
5.	To form matrix for the given quadratic form(C111.2) (Applying)	1			
	To find eigen values and eigen vectors (C111.2) (Applying)	2			
	To get $P^{T}AP = D$ and writing canonical form, rank, index and signature (C111.2) (Applying)	2			
6.	To check continuous and derivable and $f(a)=f(b)$ of $f(x)$ (C111.3) (Creating)	3			
	To apply Rolle's theorem and get value of c (C111.3) (Creating)	2			
	TOTAL	20			

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

SCHEME OF EVALUATION-MATRICES & CALCULUS(MID-II)(Set-2)

Instructions:

- a) Any answer by alternate method should be valued and suitably awarded.
- b) All answers (including extra, stuck off and repeated) should be valued. Answers with maximum marks must be considered.

Qn No	Description of Answer	Marks
1 a)	To write Taylor's series expansion (C111.3) (Creating)	1
	To calculate value of $f(x) = \log \cos x$ at $x = \pi/3$ (C111.3) (Creating)	1
b)	To write Maclaurin's series expansion(C111.3) (Creating)	1
	To calculate value of $f(x) = \cos x$ at $x = 0$ (C111.3) (Creating)	2
2.	To find Jacobian of x,y,z with respect to u,v,w (C111.5) .(Remembering)	3
	To find Jacobian of u,v,w with respect to x,y,z .(C111.5)(Remembering)	2
3.	Using Lagrange's method of multipliers formula .(C111.5)(Remembering)	1
	To calculate maximum and minimum values .(C111.5)(Remembering)	4
4.	To evaluate $\int_0^5 \int_0^{x^2} x(x^2 + y^2) dxdy$ (C111.6) (Understanding)	2
	To evaluate $\int_0^4 \int_0^{x^2} e^{\frac{y}{x}} dxdy$ (C111.6) (Understanding)	3
5.	To Evaluate $\int_0^\pi \int_0^{a(1+\cos\theta)} r^2 \cos\theta dr d\theta$ (C111.6) (Understanding)	5
6.	To take limits of x and y (C111.6) (Understanding)	2
	To find area of the region bounded by the parabolas (C111.6) (Understanding)	3
	TOTAL	20

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

TUTORIAL TOPICS

S.	Торіс	Teahind	No.of Sessions	Reference book
No		Method/Teaching	Planned	
		Aid		
1	Rank of the matrix by using Echelon form	Lecture Method	1	R-1
2	Rank of the matrix by using Normal form	Lecture Method	1	R-1
3	Inverse of the matrix by using Gauss Jordan method	Lecture Method	1	R-1
4	Homogeneous system of linear equations and problems	Lecture Method,Video	1	R-1,T-1
5	Non Homogeneous system of linear equations and problems	Problem solving Method,Video	1	R-1,T-1
6	Gauss Elimination method and Problems	Lecture Method/ Problem solving Method, Video	1	T-1
7	Gauss seidal Iteration methd and Problems	Lecture Method /Problem solving Method, Video	1	T-1
8	To finding eigen values and Eigen Vectors of a Martix	Problem solving Method, Web Presentation, video	1	T-1
9	To find Diagonalization of a Matrix	Lecture Method	1	T-1
10	Cayely Hamilton theorem -Problems	Problem solving Method, Video	1	T-1
11	Reduction of Quadtratic form to Canonical form by using Orthogonal transformation	Lecture Method	1	R-1
12	Rolle's Mean value theorem - Problems	Problem solving Method,web presentation	1	R-1
13	Lagrange's Mean value theorem- Problems	Problem solving Method ,web presentation	1	R-1
14	Cauchy's mean value theorem -Problems	Problem solving Method, web presentation	1	R-1,T-1
15	Taylor's Series - Problems	Problem solving Method	1	R-1,T-1
16	Applications of definite integrals to evaluate surface areas and volumes of revolutions of curves	Lecture Method	1	R-1
17	Euler's theorem - Problems	Problem solving Method	1	R-1,T-1
18	Total derivative - Problems	Problem solving Method	1	R-1,T-1
19	Jacobian - Problems	Problem solving Method	1	R-1,T-1
20	Functional dependence & independence - Problems	Problem solving Method	1	T-1
21	Maxima and Minima of functions of two variables - Problems	Problem solving Method,Video	1	T-1
22	Evaluation of double integrals in Cartesian and polar coordinates	Lecture Method	1	R-1
23	Change of order of integration in Cartesian form	Lecture Method	1	R-1
24	Evaluation of triple integrals	Problem solving Method, Video	1	T-1

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 50151

Result Analysis: CYBER SECURITY

Course Title	MATRICES AND CALCULUS
Course Code	MA101BS
Programme	B.Tech
Year & Semester	I year I- semester
Regulation	BR22
Course Faculty	CH.Saritha, Assistant Professor, H&S

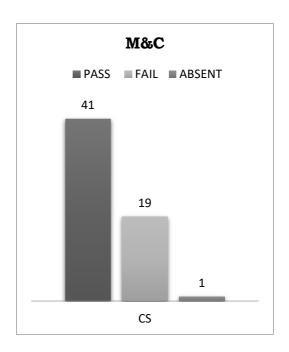
Weak Students:

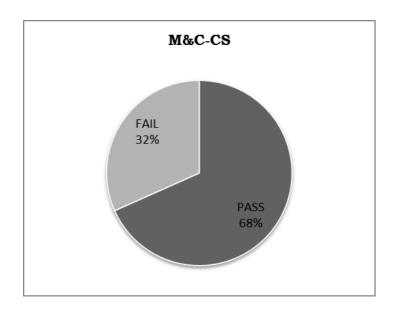
S No	Roll no	Intermediate Marks	Internal-I Status (35)	Internal-II Status (40)
1	22X31A6202	50%	22	24
2	22X31A6207	60%	34	25
3	22X31A6213	60%	25	27
4	22X31A6221	50.3%	21	25
5	22X31A6222	61%	27	31
6	22X31A6224	52%	19	23
7	22X31A6226	60%	30	24
8	22X31A6234	59.7%	24	24
9	22X31A6246	46%	29	26
10	22X31A6252	55%	19	31

Advanced learners:

S No	Roll No	Intermediate Marks	Gate Material
1	22X31A6212	91.5%	Metric spaces, Applications of multiple integrals, Applications on Beta and Gamma
2	21X31A6227	90%	functions
3	21X31A6243	92%	
4	21X31A6247	97%	
5	21X31A6653	95%	

(UGC AUTONOMOUS INSTITUTION)


Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.


(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 50151

RESULT ANALYSIS AT THE END OF SEMISTER

Branch: CS Subject: MATRICES & CALCULUS

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956. (Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad) Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

DEPARTMENT OF HUMANITIES AND SCIENCE REMEDIAL CLASSES TIME TABLE

DAY/ PERIOD	MON 4.00-5.00	TUE 4.00-5.00	WED 4.00-5.00	THUR 4.00-5.00	FRI 4.00-5.00	SAT 4.00-5.00
CSE-A	M&C	PPS	BEE	EG	EC	M&C
CSE-B	BEE	M&C	EG	PPS	EC	BEE
CSE-C	EC	EG	BEE	M&C	PPS	EC

DAY/ PERIOD	MON 4.00-5.00	TUE 4.00-5.00	WED 4.00-5.00	THUR 4.00-5.00	FRI 4.00-5.00	SAT 4.00-5.00
DS	M&C	EC	BEE	PPS	EG	EC
CYBER	PPS	M&C	EC	EG	BEE	M&C

DAY/ PERIOD	MON 4.00-5.00	TUE 4.00-5.00	WED 4.00-5.00	THUR 4.00-5.00	FRI 4.00-5.00	SAT 4.00-5.00
AIML-A	AP	PPS	M&C	ENG	AP	M&C
AIML-B	M&C	EG	PPS	AP	M&C	EG

DAY/	MON	TUE	WED	THUR	FRI	SAT
PERIOD	4.00-5.00	4.00-5.00	4.00-5.00	4.00-5.00	4.00-5.00	4.00-5.00
AI&DS	M&C	ENG	AP	PPS	AP	PPS
IOT	PPS	AP	M&C	EG	M&C	EG

DAY/ PERIOD	MON 4.00-5.00	TUE 4.00-5.00	WED 4.00-5.00	THUR 4.00-5.00	FRI 4.00-5.00	SAT 4.00-5.00
ECE	AP	ENG	M&C	PPS	AP	PPS
CIVIL	EG	AP	M&C	PPS	M&C	EG

Head of the Department Department of H&S

SRI INDU INSTITUTE OF ENGG & TECH heriauda(M) Ibrahimoatnam (M) R.R. Dist-501 516

PRINCIPAL Sri Indu Institute of Engineering & Tech

Sheriguda(Vill), Ibrahimpatnam

R.R. Dist. Telangana-501 510.

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY Department of Humanities & Sciences

	TOWN TO THE PARTY OF THE PARTY					Dε	eparti	ment	of H	umar	nities	& Sc	cienc	es							
	ONAHARDATHAN			<u>C</u>	Course	Out	come	e Att	ainn	nent	(Inte	rnal	Exa	amina	tion	<u>-1)</u>					
Nan	ne of the facu	CH.SA	ARITH	IA					Aca	demi	ic Ye	ar:						2022	2-2023	3	
_	nch & Section				RITY				_	minat								_	ernal		
	rse Name:	M&C		ВСС					Yea		I							_	ester:	T	
Cou	ise Name.	Mac							164	1.	1							Sem	ester.	1	
S.No	HT No.	Q1a	Q1b	Q1c	Q2a	Q2b	Q2c	Q3a	Q3b	Q3c	Q4a	Q4b	Q4c	Q5a	Q5b	Q5c	Q6a	Q6b	Q6c		A1
Max.	. Marks ==>	5			5			5	$oxed{oxed}$		5			5			5			10	5
1	22X31A6201	3						5			5						5			7	5
2	22X31A6202	3						4			1			3						6	5
3	22X31A6203	4						5	<u> </u>		2			5						9	5
4	22X31A6204	2			2	<u> </u>	<u> </u>	<u> </u>	Ļ				ш	3	<u> </u>		2			5	5
5	22X31A6205	5			5	<u> </u>	ļ	5	Ь—		5		Ш		<u> </u>			ш		9	5
6	22X31A6206	4			<u> </u>	├	1	-	-	<u> </u>	5		\vdash	5	<u> </u>		3	-		7	5 5
7	22X31A6207	5		\vdash	5			5	 			\vdash	$\vdash \vdash$	_	<u> </u>		5	\vdash	\vdash	9	<u> </u>
8	22X31A6208	3			5 1	₩	<u> </u>	1	-	-	5 1		$\vdash\vdash$	5	 			\vdash		9	5
10	22X31A6209 22X31A6210	3		\vdash	5	 		4	\vdash		5	\vdash	\vdash		\vdash		5	\vdash		9	5
11	22X31A6211	5						5	<u> </u>		3		$\vdash \vdash$				3			9	5
12	22X31A6211 22X31A6212	5		\vdash		 		5	\vdash		4	H	Н	\vdash	\vdash	\vdash	3	\vdash		7	5
13	22X31A6213	4		$\vdash \vdash$		†		3	\vdash		Ħ	H	H	3	╁	\vdash	4	\vdash		6	5
14	22X31A6214	4		М				5					М	4			4	\vdash		8	5
15	22X31A6215				2	<u> </u>		2									4	\vdash		7	5
16	22X31A6216	5			5	1					5		М	5				\Box		8	5
17	22X31A6217	5			5									4			5			8	5
18	22X31A6218	4			1			4												8	5
19	22X31A6219	4			5						5						4			8	5
20	22X31A6220	5			5			5			5									8	5
21	22X31A6221	4				<u> </u>	<u> </u>	4	<u> </u>								3			5	5
22	22X31A6222	4				<u> </u>	<u> </u>	3	ـــــ	<u> </u>	5		Ш	3	<u> </u>			igsquare		7	5
23	22X31A6223	3			3			4	<u> </u>		3	igsqcup	igwdapprox							7	5
24	22X31A6224	4			—	├	<u> </u>	<u> </u>	-	-	2		$\vdash \vdash$		<u> </u>			-		8	5
25	22X31A6225	5		\vdash		├	-	2	-	_	3	\vdash	$\vdash \vdash$		<u> </u>		3	₩	\vdash	8	5 5
26 27	22X31A6226 22X31A6227	5		\vdash		 		5	 		3		$\vdash\vdash\vdash$	4 5	 		5	┢─┤		8	5
28	22X31A6228	1		\vdash	3	\vdash		5	\vdash			\vdash	$\vdash \vdash$	3	\vdash	\vdash	1	\vdash		9	5
29	22X31A6229	3						1	<u> </u>		3		\vdash	1	 		3	\vdash		8	5
30	22X31A6230	3			5	<u> </u>		4									5			8	5
31	22X31A6231	4			3			4			2									7	5
32	22X31A6232	3			2			1			2									9	5
33	22X31A6233	4			5									5			2			9	5
34	22X31A6234	5				<u> </u>		3	ــــــ		2	Ш	Ш		<u> </u>		2	igsquare		7	5
35	22X31A6235	3		igwdown		₩		—	—		4	igsqcurve	ш		<u> </u>		3	igspace	igsquare	8	5
36	22X31A6236	5			5	<u> </u>	<u> </u>	5	<u> </u>		5		\vdash		<u> </u>			<u> </u>		9	5 5
37	22X31A6237	5		\vdash	5 5			5	 		4	\vdash	\vdash		<u> </u>			\vdash	\vdash	8	5
38	22X31A6238 22X31A6239	5		$\vdash \vdash \vdash$	5	\vdash	-	3 5	\vdash	\vdash	1	$\vdash \vdash$	$\vdash \vdash$		\vdash	\vdash	1	$\vdash \vdash$	$\vdash \vdash$	8	5
40	22X31A6240	4						3	 	\vdash	 		\vdash	5	 			\vdash		6	5
41	22X31A6241					\vdash		4	\vdash		4		\vdash	3	\vdash		5	\vdash		7	5
42	22X31A6242	4			3			1	†					_			_			6	5
43	22X31A6243	5						5			5			5						6	5
44	22X31A6244	2			2						2						2			6	5
45	22X31A6245	5			4			2						5						9	5
46	22X31A6246	4		igsqcup	4	<u> </u>	<u> </u>	4	Ь—		5	igsqcup	ш	<u> </u>	<u> </u>	igsquare		igsquare	igsqcup	7	5
47	22X31A6247	5		igsqcup	<u> </u>	Ļ	<u> </u>	<u> </u>	—	<u> </u>	5	igsqcut	ш	5	<u> </u>	Ш	5	╙	igsquare	7	5
48	22X31A6248	2		$\vdash \vdash \vdash$	1	 	<u> </u>	 	—		 _	igspace	\vdash	3	<u> </u>		1	igspace	$\vdash \vdash$	7	5
49	22X31A6249	5		$\vdash \vdash \vdash$	-	 	1	4	\vdash	\vdash	5	$\vdash \vdash$	$\vdash \vdash$	5	\vdash	\vdash		₩	$\vdash \vdash$	9	5 5
50	22X31A6250 22X31A6251	4		$\vdash\vdash\vdash$	2	 	 	3	├─	\vdash	5	$\vdash \vdash$	$\vdash\vdash$	2	 	$\vdash\vdash$		$\vdash \vdash$	\vdash	7 6	5
52	22X31A6251 22X31A6252	3		$\vdash \vdash \vdash$	2	\vdash	 	+	 	\vdash	-	$\vdash \vdash$	$\vdash \vdash$		\vdash	$\vdash\vdash$	1	\vdash	$\vdash \vdash$	8	5
53	22X31A6252 22X31A6253			$\vdash \vdash$	5	\vdash	†	5	\vdash	\vdash	5	H	\vdash	5	\vdash	$\vdash \vdash$		\vdash	\vdash	8	5
54	22X31A6254	5				 	†	5	 		3	H	\Box		\vdash	\vdash	5	\vdash		9	5
55	22X31A6255	5				<u> </u>		5			5			5			-	\vdash		7	5
56	22X31A6256	4						2			4						3			6	5
57	22X31A6257	3			1			5			3									7	5
58	22X31A6258	5			4						5			5						7	5
59	22X31A6259	4						4			5						2			3	5
60	22X31A6260	5		Ш	1	<u> </u>	<u> </u>	Щ	Ь—		5	igsqcup	Ш	5		Ш		Ш	igsqcup	7	5
61	22X31A6261	5						3		1	5			4						6	5
62	22X31A6262	5		-	3			4			4						1	-	-	8	5

Target set by the faculty/HoD	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	3.00	0.00	0.00	6.00	3.00
Number of students performed above	53	0	0	23	0	0	39	0	0	34	0	0	25	0	0	21	0	0	59	62
Number of students attempted	58	0	0	34	0	0	47	0	0	43	0	0	27	0	0	30	0	0	62	62
Percentage of students scored more than target	91%			68%			83%			79%			93%			70%			95%	100%
CO Mapping with I	Exam Q)uesti	ons:																	
CO-1	Y			Y															Y	Y
CO-2							Y			Y						v			Y	Y
CO-3													v			*			У	y
CO-4																				
CO-5																				
CO-6																				
Scored >Target %	91%			68%			83%			79%			93%			70%			95%	100%
CO Attainment has	sed on I	Exam	Ques	tions:																
CO-1	91%			68%															95%	100%
CO-2							83%			83%						83%			95%	100%
CO-3													83%						95%	100%
CO-4																				
CO-5																				
CO - 6																				
CO		obj		Asgn	(Overa	11		Leve	1									ttainn	nent Lev
CO-1	80%	95%		100%		92%			3.00										1	40%
CO-2	83%	95%		100%		93%			3.00										2	50%
CO-3	83%	95%		100%		93%			3.00										3	60%
CO-4																				
CO-5																				
CO-6																				
		. ,	1	1 Ex		. ,			3.00											

SRI INDU INSTITUTE OF ENGINEERING AND TECHNOLOGY Department of Humanities & Sciences Course Outcome Attainment (Internal Examination-2) Name of the fact CH.SARITHA Academic Year: 2022-2023 Branch & Section CYBER SECURITY Examination: <u>II Internal</u> Course Name: Year: Semester: viva/ Obj S.No HT No. **A2** Q4b | Q4c | Q5a | Q5b | Q5c | Q6a | Q6b | Q6c Q1a Q1b Q1c Q2a Q2b | Q2c | Q3a | Q3b | Q3c | Q4a | ppt Max. Marks ==> 1 22X31A6201 2 22X31A6202 3 22X31A6203 4 22X31A6204 5 22X31A6205 6 22X31A6206 22X31A6207 8 22X31A6208 22X31A6209 10 22X31A6210 22X31A6211 12 22X31A6212 13 22X31A6213 14 22X31A6214 15 22X31A6215 16 22X31A6216 17 22X31A6217 18 | 22X31A6218 19 22X31A6219 20 22X31A6220 22X31A6221 22X31A6222 22X31A6223 22X31A6224 22X31A6225 22X31A6226 27 22X31A6227 22X31A6228 29 22X31A6229 30 22X31A6230 31 22X31A6231 32 22X31A6232 33 | 22X31A6233 34 22X31A6234 35 22X31A6235 36 22X31A6236 37 | 22X31A6237 22X31A6238 22X31A6239 40 22X31A6240 41 22X31A6241 22X31A6242 43 22X31A6243 44 22X31A6244 45 | 22X31A6245 46 22X31A6246 47 | 22X31A6247 48 | 22X31A6248 49 22X31A6249 50 | 22X31A6250 | A Α 22X31A6251 22X31A6252 22X31A6253 54 | 22X31A6254 22X31A6255 56 | 22X31A6256 22X31A6257 22X31A6258 59 22X31A6259 60 22X31A6260 61 22X31A6261 62 22X31A6262

Target set by the faculty / HoD	1.80	1.20	0.00	3.00	0.00	0.00	3.00	0.00	0.00	1.80	1.20	0.00	3.00	0.00	0.00	3.00	0.00	0.00	6.00	3.00	3.00
Number of students performed above the target	31	16	0	37	0	0	32	0	0	15	11	0	0	0	0	7	0	0	54	62	62
Number of students attempted	53	43	0	51	0	0	45	0	0	39	28	0	1	0	0	21	0	0	62	62	62
Percentage of students scored more than target	58%	37%		73%			71%			38%	39%		0%			33%			87%	100%	100%
CO Mapping with	Exam (<u>Questi</u>	ons:																		
CO - 1																					
CO - 2																					
CO - 3	X 7	X 7																	Y	V	
CO - 4	Y	Y					Y												Y	Y	y v
CO - 5							1			Y	Y		y						Y	Y	y V
CO - 6				Y							-		, ,			y			Y	Y	y
																J				-	3
% Students																					
Scored >Target %	58%	37%		73%			71%			38%	39%		0%			33%			87%	100%	100%
CO Attainment bas	sed on	Exam (Questio	ns:																	
CO - 1																					
CO - 2																					
CO - 3	58%	58%																	87%	100%	100%
CO - 4							58%												87%	100%	100%
CO - 5										58%	58%		58%						87%	100%	100%
CO - 6				58%												58%			87%	100%	100%
со	Subj	obj	aasgn	ppt	(Overal	l		Leve	1									Atta	inment	Level
CO-1																			1	40	0%
CO-2																			2	50	0%
CO-3	58%	87%	100%	100%		86%			3										3	60	0%
CO-4	58%	87%	1			86%			3.00												
CO-5	58%	87%	1			86%			3.00												
CO-6	58%	87%	†			86%			3.00												
Attainme	<u> </u>) —		3.00												
Auamine	ш (.	шист	iiai E	zaiiiil	iauO	11-4	<i>)</i> –		J.UL	,											

Department of Humanities & Sciences

Name of the faculty CH.SARITHA Academic Year: 2022-2023

Branch & Section: CYBER SECURITY Year / Semester: 1/1

Branch	n & Section:	CYBER SECURITY		Year / Sei	mester:	1/1
Course	Name:	M&C				
S.No	Roll Number	Marks Secured		S.No	Roll Number	Marks Secured
1	22X31A6201	13		36	22X31A6236	32
2	22X31A6202	21		37	22X31A6237	34
3	22X31A6203	23		38	22X31A6238	6
4	22X31A6204	25		39	22X31A6239	14
5	22X31A6205	30		40	22X31A6240	22
6	22X31A6206	37		41	22X31A6241	15
7	22X31A6207	21		42	22X31A6242	14
8	22X31A6208	38		43	22X31A6243	30
9	22X31A6209	24		44	22X31A6244	9
10	22X31A6210	21		45	22X31A6245	24
11	22X31A6211	14		46	22X31A6246	24
12	22X31A6212	30		47	22X31A6247	46
13	22X31A6213	21		48	22X31A6248	31
14	22X31A6214	12		49	22X31A6249	37
15	22X31A6215	9		50	22X31A6250	
16	22X31A6216	21		51	22X31A6251	40
17	22X31A6217	41		52	22X31A6252	5
18	22X31A6218	22		53	22X31A6253	50
19	22X31A6219	14		54	22X31A6254	22
20	22X31A6220	22		55	22X31A6255	34
21	22X31A6221	21		56	22X31A6256	21
22	22X31A6222	9		57	22X31A6257	13
23	22X31A6223	27		58	22X31A6258	28
24	22X31A6224	21		59	22X31A6259	34
25	22X31A6225	27		60	22X31A6260	29
26	22X31A6226	22		61	22X31A6261	25
27	22X31A6227	38		62	22X31A6262	30
28	22X31A6228	0				
29	22X31A6229	8				
30	22X31A6230	5				
31	22X31A6231	7				
32	22X31A6232	17				
33	22X31A6233	31				
34	22X31A6234	21				
35	22X31A6235	5				
Max Ma	arks	60				
Class A	verage mark		23		Attainment Level	% students
Number	r of students pe	erformed above the target	28		1	40%
Number	r of successful	students	61		2	50%
Percent	age of students	s scored more than target	46%		3	60%
Attai	inment lev	el	2			

SRI INDU I	INSTIT	UTE OF EN	GINEE	ERING AND	TECHNOLOGY	
TO PROMEENING	Departme	ent of Humanities	& Science	es		
ALLANDON DE LA CONTROL MANAGEMENTO DEL CONTROL MANAGEMENTO DE LA CONTROL MANAGEMENTO DEL CONTROL MANAGEMENTO DE LA CONTROL		Course Ou	itcome A	<u>ttainment</u>		
IDRAHIMPATHAM						
Name of the facult	CH.SARIT	<u>HA</u>		Academic Year	2022-2023	
Branch & Section:	CYBER SE	<u>CURITY</u>		Examination:	<u>I Internal</u>	
Course Name:	<u>M&C</u>			Year:	<u>I</u>	
				Semester:	<u>I</u>	
Course Outcomes	1st Internal Exam	2nd Internal Exam	Internal Exam	University Exam	Attainment Level	
CO1	3.00		3.00	2.00	2.40	
CO2	3.00		3.00	2.00	2.40	
CO3	3.00	3.00	3.00	2.00	2.40	
CO4		3.00	3.00	2.00	2.40	
CO5		3.00	3.00	2.00	2.40	
CO6		3.00	3.00	2.00	2.40	
Inter	nal & Univ	ersity Attainment:	3.00	2.00		
		Weightage	40%	60%		
CO Attainment for th	e course (In	nternal, University	1.20	1.20		
CO Attainment for	the course	(Direct Method)		2.40		
		•	_			
Overall co	ourse	attainme	nt lev	el	2.40	

SRI INDU INSTITUTE OF ENGINEERING & TECHNOLOGY Department of Humanities & Sciences **Program Outcome Attainment (from Course)** Name of Faculty: **CH.SARITHA** Academic Year: 2022-2023 CYBER SECURITY Branch & Section: Year: Course Name: M&C Semester: **CO-PO mapping** PO1 PO2 PO12 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 3 2 1 1 CO1 1 3 2 1 1 1 CO2 2 2 1 1 1 CO3 2 3 1 1 2 CO4 2 3 2 1 1 CO5 3 2 1 1 2 CO6 Course |2.67 | 2.17 1.00 | 1.00 1.50 **Course Outcome Attainment** CO 2.40 **CO1** 2.40 CO₂ 2.40 **CO3** 2.40 **CO4** 2.40 **CO5** 2.40 **CO6** Overall course attainment level 2.40 **PO-ATTAINMENT** PO1 PO2 PO3 PO12 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 co **Attainm** 2.13 | 1.73 0.80 0.80 1.20 ent

CO contribution to PO - 33%, 67%, 100% (Level 1/2/3)

(UGC AUTONOMOUS INSTITUTION)

Accredited by NAAC A+ Grade, Recognized under 2(f) of UGC Act 1956.

(Approved by AICTE, New Delhi and Affiliated to JNTUH, Hyderabad)

Khalsa Ibrahimpatnam, Sheriguda(V), Ibrahimpatnam(M), Ranga Reddy Dist., Telangana – 501510

ATTENDANCE REGISTER

https://drive.google.com/file/d/1NJC3xmqdC7klMyn2 f3hRFJNRZ2sYHmy/view?usp =sharing